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Flat bands provide a natural platform for emergent electronic states beyond Landau paradigm.
Among those of particular importance are flat Chern bands, including bands of higher Chern num-
bers (C>1). We introduce a new framework for band flatness through wave functions, and classify
the existing isolated flat bands in a ”periodic table” according to tight binding features and wave
function properties. Our flat band categorization encompasses seemingly different classes of flat
bands ranging from atomic insulators to perfectly flat Chern bands and Landau Levels. The per-
fectly flat Chern bands satisfy Berry curvature condition F, = TrG,; which on the tight-binding
level is fulfilled only for infinite-range models. Most of the natural Chern bands fall into category of
C = 1; the complexity of creating higher-C flat bands is beyond the current technology. This is due
to the breakdown of the microscopic stability for higher-C' flatness, seen atomistically e.g. in the
increase of the hopping range bound as ocy/Ca. Within our new formalism, we indicate strategies for
bypassing higher-C' constraints and thus dramatically decreasing the implementation complexity.
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m Perfectly flat bands in twisted bilayer Graphene

Tarnopolsky, Kruchkov, Vishwanath, PRL (2019).
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INSPIRATION

m Perfectly flat bands in twisted bilayer Graphene
Tarnopolsky, Kruchkov, Vishwanath, PRL (2019).

m Haldane argument on the holomorphicity of the higher Landau Levels
Haldane, Journal Math Phys (2018).

m Qi duality between Landau levels and C=1 Chern bands
Qi, PRL (2011).

m Jian-Gu-Qi lower bound on the hopping range in perfectly flat bands
Jian, Gu,Qi, phys status solidi (2013).

m Trescher-Bergholtz construction of higher Chern flat bands in the multilayers
Trescher, Bergholtz, PRB (2012).
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(QUESTIONS

m Is there a common cause of the band flatness?

m Why bringing Landau levels on the lattice (local tight-binding) inevitably broadens
the bands?

m Why most of natural flat Chern restricted to C=17

m Why is it impossible to construct a perfectly flat topological band on the local tight
binding? (Chen theorem’2014)

m What is the condition for ideal flat Chern bands expressed through wave functions?

m Can we classify all the known (gapped) perfectly flat bands?
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DEFINITION OF BAND FLATNESS [1]
m Typically, the band flatness is defined through the energy definition

bandwidth

band gap

m This is a "visual” definition: the band seems to be flat relatively to band scale.
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m However, this definition suffers from two problems: 1) it does not have a predictive
power; 2) it does not addresses the correlated phenomena (does not guaranty the
hierarchy w < U< A).
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DEFINITION OF THE BAND FLATNESS [2]

m Sometimes, it is more convenient to define band flatness not through energy, but
through the energy derivatives, such as Fermi velocity

Renormalized Fermi velocity

flatness =
Bare Fermi velocity

m This qualitative criterion was used in the first years of twisted bilayer graphene for
detecting the magic angles
See e.g. Bistritzer, MacDonald, PNAS, (2011).
Tarnopolsky, Kruchkov, Vishwanath, PRL (2019)
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DEFINITION OF THE BAND FLATNESS [2]
m The problem with this definition is that it often points (incorrectly) on the band
flatness even for very dispersive bands
See e.g. Bistritzer, MacDonald, PNAS, (2011).
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m Again, this definition suffers from two majors problems: 1) it does not have a
predictive power; 2) it does not addresses the correlated phenomena (does not
guaranty the hierarchy U < w < A).
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PROBLEMS WITH THESE DEFINITIONS

m The mentioned above definitions are system-dependent; they visually indicate on the
band flatness however may or may not result into the correlated phenomena

m Per se, these definitions are empirical and do not contain the information on band
geometry, topology and flatness, which are fundamentally related.
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DEMAND FOR THE NEW DEFINITION

m There is a demand for the new definition of the band flatness, which would
incorporate all the information of the flat bands themselves.

m More importantly, for the practical reasons, this definition should be compatible with
the Wannier formalism and the tigh-binding models; it should work equally good for
the trivial bands and for the Chern bands; and it should have a predictive power.

m Such definition should be expressed in terms of the wave functions, or the Green’s
functions, which contain all the information about the band geometry,
topology and flatness.
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BIRD’S VIEW ON FLAT BANDS

m There are so many flat band systems that I simply cannot list them all.

m To systematize them, we require the band to be perfectly flat; if the system can be
tuned to the situation when the bands are perfectly flat, we call them
fundamentally flat system.

TBG flat band: Tarnopolsky, Kruchkov, Vishwanath, PRL (2019)

m We then look for the all classes of fundamentally flat systems.

m Surprisingly, there are just a few classes. Examples: Atomic insulators, fine-tuned
artificial lattices (Kagome, Lieb), Landau Levels, Twisted Bilayer Graphene and its
descendants.
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COMMON GROUNDS IN ALL THE PERFECTLY FLAT BANDS

m Surprisingly, we can find a common ground for all the perfectly flat bands:
(self-)trapping in the real space

m Harmonic oscillator: self-trapping within the 22 potential
m Atomic insulator: self-trapping on the atomic sites

m Fine-tuned lattices: self-trapping within the plaquette ~ a2
m Landau levels: self trapping in the area ~ %

m Twisted bilayer graphene: self-traping at the small region (AA) within moiré cell

m The new definition should combine self-trapping criterion and be written in terms of
the wave functions
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DEFINITION OF BAND FLATNESS

m We introduce the new flatness criterion through wave function

i S lVA)F
2 rso [Y(R)?
m Exact Zero means the band is perfectly flat

m This is intuitive for 6(R) and fine-tuned cases with A ~ 2. Let’s show that it works for
large A.
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PROOF FOR LARGE A

m Remark: A — oo is not physical (non-local Hamiltonian), but it is important for
theoretical analysis of 1) band stability; 2) explicit construction of e.g. Landau Levels
on the lattice.

See e.g. Kapit, Muller, PRL, (2010).

m Generic argument: we can always construct a perfectly flat band for a non-local
Hamiltonian

20l ol

m Consider a local tight-binding Hamiltonian H = Z taCip

m Electronic bands £1(k),ea(k)...e n(k)

m We can construct a non-local Hamiltonian with perfectly flat band(s)

a Eo H(k) k(R;—R; fla: at
- By M e s e, )
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ij
m We call this perfectly falt band generic nontopological nonlocal.
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m The same argument applies to topological bands
m Consider e.g. Haldane model (A = 2)

Heomn = D _tocie;+ Yty che + > G el G = e (3)
' (i) ()
m Let’s put & = +7/2, the spectrum is particle-hole symmetric we thus obtain two
perfectly flat Chern bands at £ = +FEy through Tﬂat = Zk Z-i((ll(cg R,
flat __ at T
H - Zij T3 67/3

ij Cia

Used for FCI in Neupert et al., PRL, (2011).

m Thus it is always possible to construct a perfectly flat band for A = oo, be it
topological or not.
m Since the range A of effective tight-binding is related to the wave function’s spatial

2
tails, the above statement is consistent with the flatness parameter f= %.
R>0
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FLATNESS OF TOPOLOGICALLY-TRIVIAL BANDS

2
m We now apply our flatness criterion f= % to the topologically trivial bands
R>0

m [t is more natural to work with Wannier functions; trivial bands are maximally
Wannierizable in 2D; for our discussion it is enough to consider Wannierization along
one of the 2D axis

W(z— R) x / iy (2= 1) (4)

m Now, we are interested in the asymptote for large A; the claim is if flatness behaves
good for large A, it is possible to make realistic (nearly flat) band on tight binding
A~2

m A topologically trivial band may have a singularity in the form of a branch vertex in
complex momentum k= k, + ih,, of a generic form u(k =~ ki) ~ uo[i(k — k.)]*, with
a>—1.

See e.g. Kohn, PhysRev, (1959).
He, Vanderbilt, PRL, (2001).
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FLATNESS OF TOPOLOGICALLY-TRIVIAL BANDS

m We need to employ asymptotic analysis here (find W(z) for large z).
See e.g. Kohn, PhysRev, (1959).
He, Vanderbilt, PRL, (2001).

m Let’s say u(k =~ ki) ~ ugli(k — k.)]*, with a>—1. Denote k. = ko + ih as the position
of the singularity in the complex plane.

Imk

| |
| |
X ih (%

,W/a ﬂ/a
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FLATNESS OF TOPOLOGICALLY-TRIVIAL BANDS

| |
| |
x in o (x

7"/(1 ‘"/a

m Asymptotics of Wannier function reduces to integral representation of the Gamma
function along a Hankel contour encompassing ko + ¢h.

exp(—hz)

W(z) ~ 2up sin(ma)T(1 + ) Afa (5)

m In case of several singularities we take h = min[Im k], corresponding to the one
closest to the real axis.
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FLATNESS OF TOPOLOGICALLY-TRIVIAL BANDS

2
m Flatness of topologically trivial bands f= %
>

m For this, we need to use analytical estimates of the sums of form
Yn(A)=)"2 o "e~*. We rewrite this sum as

Sa(A) = e ((o

i, n, A) (6)

where ((¢, n, A) = > o0 ((z+ A) """ is Lerch zeta function.

Tr=
See e.g Apostol (1951), Johnson (1974) in Pacific Journal of Mathematics
m Up to O(1) prefactor Lerch zeta function (5=, n, A) behaves as 1/A™ for A>>1, thus
we obtain analytical estimate Zn(/\)wA_”e_/<r and X,,(1)~0O(1/e).

m The flatness parameter involves summation of form ¥, (A + 1)/, (1)~(A 4+ 1)~ e,
thus

1 —2hAa
fr~ me ) (7)

m We confirm numerically that this approximation holds.
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FLATNESS OF TOPOLOGICALLY-TRIVIAL BANDS

m We can further simply this criterion

1 —2hAa
fN A2(a+l) € ’ (8)

m We are not interested here in the power-law prefactor, and factor of 2 in the exponent.
It is safe to rewrite the flatness criterion as

fo= e_hA“, for trivial bands. (9)

m The flatness parameter fy of (9) sets a fundamental scale for achievable band flatness,
and covers three distinguished classes of perfectly flat nontopological bands with

Jo=0.
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PART I: FLAT TOPOLOGICALLY-TRIVIAL BANDS AND WHERE TO
FIND THEM

fo = e "2 for trivial bands.

m a—00, atomic insulator.

m A—00, generic nonlocal, 7flat = £o 5= Zﬂ(};) K(Ri—Ry) gflat — 5200 qilat of o)
m h—00, singularity removed to infinity (nonsingular perfectly flat band).
Examples are listed in Ref. Rhim et al, PRB, 2019 .

m Cases of topologically trivial, gapped perfectly flat bands are covered by the three
classes above, and constitute the topologically-trivial sector of the flat band
classification.

m We do not have evidence of perfectly flat, gapped topologially-trivial bands which do

not fit into this classification.
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PERIODIC TABLE OF PERFECTLY FLAT BANDS

atomic fine-tuned  generic generic topological nonlocal Landau TBG chiral
insulator flat trivial Level
nonlocal
0 O(1) 00 00 00 00 S (00); O(1) Hopping
range A
- none any ~7/a ~/a ~m/a - - (cancelled; Singularity
7w/ An) position h
0 0 0 Cl=3+% ICl=m C]>1 C=+1 C=+1 Chern
number C'
not, double- double- double- meromorphic  double- holomorphic  holomorphic Periodicity
defined periodic, periodic, periodic non-double- periodic quasiperiodic  quasiperiodic in BZ and
nonholo- nonholo- nonholomor-  periodic meromorphic analyticity
morphic morphic phic
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FLATNESS OF CHERN BANDS

2
m We now apply the same argument f= % to the flatness of the Chern bands
R>0

m A theorem, tracing back to Thouless’1984, prevents Wannierizing Chern bands in 2D.
Thouless, J. Phys. C, (1984) .

m However, it does not prevent Wannierizing a Chern band along one of the 1D
directions of a 2D Chern insulator
Qi, PRL, 2011 .

m For our purposes, localization along 1D is a good indicator of band flatness through
f= Sraa lT(R)?
T Xrso TR

m We thus proceed with Wannierizing a Chern band along 1D, and finding its
asymptotic behavior.
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CHERN NUMBERS FOR A MEROMORPHIC FLAT BAND

m We start from the construction of higher- C' Chern bands on the basis of double
periodic meromorphic functions.

m The essential toolbox is built upon implementation of theta functions, Weierstrass and
Jacobi functions, and their combinations

m First, we define the Chern numbers for a meromorphic flat band

m We can use connection between the wave function singularities (poles) and the band
Chern number C= [, %Fzy, with Flpy=0,A4,—0y Az, Ax=—1i{ux|Okux)), in the
complex plane z=(ky,ky)

Agdz+ A dz \
C= ngZJFZ:j{ T—Zpl(zi). (10)

* *
Zl i Z1

m The Chern number is expressed through the sum of all poles 2§ in Brilloin zone (BZ),
counting their multiplicity p;(2})
See e.g. Baum, Essays on Topology and Related Topics (1970) .
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CHERN NUMBERS FOR A MEROMORPHIC FLAT BAND

=\,

m Example for C=4: 4 simple poles, each multiplicity 1.
ky

Adz+A déiz




ASYMPTOTICS FOR MEROMORPHIC FLAT BANDS

m For asymptotics, it is sufficient to replace the elliptic functions with their principal
behavior around poles

Uo
u(k) ~ ; (R + Regular part. (12)
(here k= k, + ik, is in the first BZ).
kl/
x x
Fa
x x
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ASYMPTOTICS FOR MEROMORPHIC FLAT BANDS
ky

m The main contribution to the Wannier integral is given by the pole (12) of multiplicity
prn < C/2 closest to the the real axis.

m The residue at the pole is Res u(k) = —iugaP» e /(p, — 1)!, with k. = ko + ih.
m Using the residue theorem, one obtains the Wannier asymptote

~ 27Tu0 pn—1 ,—hz
W(z) ~ o = 1)!56 e " (13)
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FLATNESS FOR CHERN BANDS

m To derive the flatness parameter, we need to evaluate sums of form
Sm(A) =22 4 @™e® with m=2(p, — 1).
m We can rewrite this sum through Lerch zeta function as
Sa(d) = e Mo, —m A) (14)
27

m Up to O(1) prefactor Lerch zeta function C(ﬁ, —m, A) behaves as A™ for A>>1, thus
Ym(A)~Ame™™ and ¥,,(1)~O(1/e).

m Restoring dimensional units, we obtain the flatness criterion as f~ A™e
m = 2(p, — 1), i.e. depends on the nature of the wave function singularities.

—2hal where
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FLATNESS FOR CHERN BANDS

m The finite Chern number inevitably leads to constraints on the band flatness

m The high C=N can be attained in multiple ways. The simplest way is by having two
poles of multiplicity N each. This results into a higher Chern number Cony=2N>1
restraining band flatness as f~A 2V —2¢—2had

m To have a topological band, the wave function singularity must reside inside the BZ.

m This leads to the limitation h<7/a (square lattice), or ha~1 independently of a and
lattice symmetries.

m The flatness parameter is

fro ACv=2A, (15)
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BAND FLATNESS CONSTRAINTS OF HIGHER CHERN NUMBERS

—_

BAND FLATNESS, f
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m Perfectly flat Chern bands only for A = oo
m High Chern number strongly obstructs band flatness
m This could explain why most of natural flat Chern bands limited to C=1.
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CHEN THEOREM (2014)

m In a double-periodic system, it is impossible to have perfectly flat Chern bands on the
local tight binding.

10P Publishing Journal of Physics A: Mathematical and Theoretical
J. Phys. A: Math. Theor. 47 (2014) 152001 (12pp) doi:10.1088/1751-8113/47/15/152001

Fast Track Communications

The impossibility of exactly flat non-trivial
Chern bands in strictly local periodic tight
binding models

Li Chen', Tahereh Mazaheri', Alexander Seidel’
and Xiang Tang’

! Department of Physics, Washington University, St. Louis, MO 63130, USA
2 Department of Mathematics, Washington University, St. Louis, MO 63130, USA
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REMARKS ON CHERN BAND FLATNESS

fro AO=27A (16)
m Consistent with the Chen theorem (2014).
m Not reducible to the local fine tuning (perfect band flatness)

m Not reducible to the atomic insulator. Chern insulator and atomic insulator belong to
different topological classes.
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PERIODIC TABLE OF PERFECTLY FLAT BANDS

atomic fine-tuned  generic generic topological nonlocal Landau TBG chiral
insulator flat trivial Level
nonlocal
0 O(1) 00 00 00 00 S (00); O(1) Hopping
range A
- none any ~7/a ~/a ~m/a - - (cancelled; Singularity
7w/ An) position h
0 0 0 Cl=3+% ICl=m C]>1 C=+1 C=+1 Chern
number C'
not, double- double- double- meromorphic  double- holomorphic  holomorphic Periodicity
defined periodic, periodic, periodic non-double- periodic quasiperiodic  quasiperiodic in BZ and
nonholo- nonholo- nonholomor-  periodic meromorphic analyticity
morphic morphic phic
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LANDAU LEVELS AND TWISTED BILAYER GRAPHENE

m First, we can relax condition of double-periodicity, but still require the flat band state
to be a function of z=k,+ik,.

m In this case the contribution along the BZ boundary, which vanishes due to
double-periodicity, may itself contribute to the Chern number.

%A&:%C (17)

m This case corresponds to the continuum model of twisted bilayer graphene (TBG),
which hosts perfectly flat Chern bands at the magic angle.
Tarnopolsky, Kruchkov, Vishwanath, PRL, (2019).

m Duality between the perfectly flat Chern bands in TBG and the lowest Landau level
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LANDAU LEVELS AND TWISTED BILAYER GRAPHENE

m In both cases we are dealing with effective magnetic fields which produce Berry
curvature F, o< %, flux 27 through effective Brillouin zone (MBZ) and a perfectly flat
band in a certain limit.

m For a generalized Landau level, without loss of generality we can consider asymptote
W(z) x ae= /2.

m for Landau Levels the flatness criterion asymptotically reads
fLL ~ A2n—1e—A2a2/l?37 (18)

m Landau levels are perfectly flat only in the nonlocal limit A>I5/a—00.

m Bringing this system on the tight-binding lattice (finite a, finite A) inevitably
broadens the Landau levels for any finite A
Hosftadter, PRB, (1976).
Kapit, Mueller, PRL, (2010).
Dong, Mueller, PRB, (2020).
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TOPOLOGICAL CONSTRAINTS ON HOPPING RANGE

HOPPING RANGE, rpop

0:

m Consistent with fundamental bound on hopping range v/Ca of Jian-Gu-Qi (2013)

\
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lower bound
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QUANTUM GEOMETRY AND BAND FLATNESS

m The band topology and geometry is described by the "quantum geometric” tensor

&5 = (Oquxc| (1 — |uxc) (uxc|) [05uc), (19)

Roy, PRB, 2014 .
Jackson et al, Nat Comm, 2015

m The imaginary part of & is responsible for topology, and gives (off-diagonal) Berry
curvature Fy; = Im®;; the real part G; = Re®;; is Fubini-Study metrics and is
responsible for the band geometry and its flatness.

m The ideal flat Chern bands satisfy the Berry-geometric condition

Haldane, PRL, 2011 .
Roy, PRB, 2014 .
Claasen et al., PRL, 2015 .
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QUANTUM GEOMETRY AND BAND FLATNESS

m The ideal flat Chern bands

m Holomorphic and meromorphic flat bands automatically satisfy this criterion.

m We can further rewrite
Fry = Tr Gy = (ue| [£]* ), (22)

m Integrating (23) over Brillouin zone, one obtains r2cxC, hence the localization length is
7”0’\/\/6'(1.
m For the Chern bands it is impossible to minimize localization length ry independently
from the hopping range bound o, ~ v/ Ca; thus the flatness parameter
f= Proa l¥(R)?
> rso [Y(R)?
finite tails.

cannot be made arbitrary small for any finite A, there are always

38 /42



QUANTUM GEOMETRY AND BAND FLATNESS

Fuy = Tr Gy = (uc| [ [w), (23)

m Integrating (23) over Brillouin zone, one obtains r2cxC, hence the localization length is
TON\/ZV(I.

m For the Chern bands it is impossible to minimize localization length 1y independently
from the hopping range bound o, ~ v/ Ca; thus the flatness parameter
2
f= M cannot be made arbitrary small for any finite A, there are always
> rso Y (R)]
finite tails.
m Intuitive explanation of Chen theorem (2014).
m Clearly now, the higher Berry fluxes in (23), hence the higher Chern numbers |C|>1,
present stronger constraints on electronic band flatness.
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OVERVIEW: (QUESTIONS

m Is there a commmon cause of the band flatness?

m Why bringing Landau levels on the lattice (local tight-binding) inevitably broadens
the bands?

m Why most of natural flat Chern restricted to C=17

m Why is it impossible to contruct a perfectly flat topological band on the local tight
binding? (Chen theorem’2014)

m What is the condition for ideal flat Chern bands expressed through wave functions?

m Can we classify all the known (gapped) perfectly flat bands?
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PERIODIC TABLE OF PERFECTLY FLAT BANDS

atomic fine-tuned  generic generic topological nonlocal Landau TBG chiral
insulator flat trivial Level
nonlocal
0 O(1) 00 00 00 00 S (00); O(1) Hopping
range A
- none any ~7/a ~/a ~m/a - - (cancelled; Singularity
7w/ An) position h
0 0 0 Cl=3+% ICl=m C]>1 C=+1 C=+1 Chern
number C'
not, double- double- double- meromorphic  double- holomorphic  holomorphic Periodicity
defined periodic, periodic, periodic non-double- periodic quasiperiodic  quasiperiodic in BZ and
nonholo- nonholo- nonholomor-  periodic meromorphic analyticity
morphic morphic phic
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SUMMARY

m New criterion for band flatness through wave functions
m Periodic table for perfectly flat bands as building blocks
m Higher-Chern obstructions to band flatness (and ways to bypass them).

m Connection to quantum geometry of flat bands and Fubini-Study metrics.
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