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Inspiration

Perfectly flat bands in twisted bilayer Graphene
Tarnopolsky, Kruchkov, Vishwanath, PRL (2019).
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Inspiration

Perfectly flat bands in twisted bilayer Graphene
Tarnopolsky, Kruchkov, Vishwanath, PRL (2019).

Haldane argument on the holomorphicity of the higher Landau Levels
Haldane, Journal Math Phys (2018).

Qi duality between Landau levels and C=1 Chern bands
Qi, PRL (2011).

Jian-Gu-Qi lower bound on the hopping range in perfectly flat bands
Jian, Gu,Qi, phys status solidi (2013).

Trescher-Bergholtz construction of higher Chern flat bands in the multilayers
Trescher, Bergholtz, PRB (2012).
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Questions

Is there a common cause of the band flatness?

Why bringing Landau levels on the lattice (local tight-binding) inevitably broadens
the bands?

Why most of natural flat Chern restricted to C=1?

Why is it impossible to construct a perfectly flat topological band on the local tight
binding? (Chen theorem’2014)

What is the condition for ideal flat Chern bands expressed through wave functions?

Can we classify all the known (gapped) perfectly flat bands?
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Definition of Band Flatness [1]
Typically, the band flatness is defined through the energy definition

flatness =
bandwidth
band gap

This is a ”visual” definition: the band seems to be flat relatively to band scale.

However, this definition suffers from two problems: 1) it does not have a predictive
power; 2) it does not addresses the correlated phenomena (does not guaranty the
hierarchy w ≪ U ≪ ∆).

See e.g. Trescher, Bergholtz, PRB (2012).
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Definition of the band flatness [2]

Sometimes, it is more convenient to define band flatness not through energy, but
through the energy derivatives, such as Fermi velocity

flatness =
Renormalized Fermi velocity

Bare Fermi velocity

This qualitative criterion was used in the first years of twisted bilayer graphene for
detecting the magic angles

See e.g. Bistritzer, MacDonald, PNAS, (2011).
Tarnopolsky, Kruchkov, Vishwanath, PRL (2019)
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Definition of the band flatness [2]
The problem with this definition is that it often points (incorrectly) on the band
flatness even for very dispersive bands

See e.g. Bistritzer, MacDonald, PNAS, (2011).

Again, this definition suffers from two majors problems: 1) it does not have a
predictive power; 2) it does not addresses the correlated phenomena (does not
guaranty the hierarchy U ≪ w ≪ ∆).
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Problems with these definitions

The mentioned above definitions are system-dependent; they visually indicate on the
band flatness however may or may not result into the correlated phenomena

Per se, these definitions are empirical and do not contain the information on band
geometry, topology and flatness, which are fundamentally related.
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Demand for the New Definition

There is a demand for the new definition of the band flatness, which would
incorporate all the information of the flat bands themselves.
More importantly, for the practical reasons, this definition should be compatible with
the Wannier formalism and the tigh-binding models; it should work equally good for
the trivial bands and for the Chern bands; and it should have a predictive power.

Such definition should be expressed in terms of the wave functions, or the Green’s
functions, which contain all the information about the band geometry,
topology and flatness.
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Bird’s view on flat bands

There are so many flat band systems that I simply cannot list them all.

To systematize them, we require the band to be perfectly flat; if the system can be
tuned to the situation when the bands are perfectly flat, we call them
fundamentally flat system.

TBG flat band: Tarnopolsky, Kruchkov, Vishwanath, PRL (2019)

We then look for the all classes of fundamentally flat systems.

Surprisingly, there are just a few classes. Examples: Atomic insulators, fine-tuned
artificial lattices (Kagome, Lieb), Landau Levels, Twisted Bilayer Graphene and its
descendants.
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Common grounds in all the perfectly flat bands

Surprisingly, we can find a common ground for all the perfectly flat bands:
(self-)trapping in the real space

Harmonic oscillator: self-trapping within the x2 potential
Atomic insulator: self-trapping on the atomic sites
Fine-tuned lattices: self-trapping within the plaquette ∼ a2

Landau levels: self trapping in the area ∼ l2B
Twisted bilayer graphene: self-traping at the small region (AA) within moiré cell

The new definition should combine self-trapping criterion and be written in terms of
the wave functions

12 / 42



Definition of Band Flatness

We introduce the new flatness criterion through wave function

f =
∑

R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2

(1)

Exact Zero means the band is perfectly flat
This is intuitive for δ(R) and fine-tuned cases with Λ ∼ 2. Let’s show that it works for
large Λ.
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Proof for large Λ

Remark: Λ → ∞ is not physical (non-local Hamiltonian), but it is important for
theoretical analysis of 1) band stability; 2) explicit construction of e.g. Landau Levels
on the lattice.

See e.g. Kapit, Muller, PRL, (2010).

Generic argument: we can always construct a perfectly flat band for a non-local
Hamiltonian
Consider a local tight-binding Hamiltonian H =

∑Λ
ij tαβij c†i αc†j β

Electronic bands ε1(k), ε2(k)...εN(k)
We can construct a non-local Hamiltonian with perfectly flat band(s)

Tflat
ij =

E0
N

∑
k

H(k)
εn(k)

eik(Ri−Rj) → Hflat =

∞∑
ij

Tflat
ij c†i αc†j β (2)

We call this perfectly falt band generic nontopological nonlocal.
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The same argument applies to topological bands
Consider e.g. Haldane model (Λ = 2)

HFDMH =
∑

i
t0c†i ci +

∑
⟨ij⟩

tNN
ij c†i c†j +

∑
⟨⟨ij⟩⟩

tNNN
ij c†i c†j , tNNN

ij = t′eiΦij . (3)

Let’s put Φ = ±π/2, the spectrum is particle-hole symmetric, we thus obtain two
perfectly flat Chern bands at E = ±E0 through Tflat

ij = E0
N

∑
k

H(k)
εn(k)eik(Ri−Rj),

Hflat =
∑∞

ij Tflat
ij c†i αc†j β .

Used for FCI in Neupert et al., PRL, (2011).

Thus it is always possible to construct a perfectly flat band for Λ = ∞, be it
topological or not.
Since the range Λ of effective tight-binding is related to the wave function’s spatial
tails, the above statement is consistent with the flatness parameter f =

∑
R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2 .
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Flatness of topologically-trivial bands
We now apply our flatness criterion f =

∑
R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2 to the topologically trivial bands

It is more natural to work with Wannier functions; trivial bands are maximally
Wannierizable in 2D; for our discussion it is enough to consider Wannierization along
one of the 2D axis

W(x − R) ∝
∫

dkx eikx(x−R) uk. (4)

Now, we are interested in the asymptote for large Λ; the claim is if flatness behaves
good for large Λ, it is possible to make realistic (nearly flat) band on tight binding
Λ ∼ 2.
A topologically trivial band may have a singularity in the form of a branch vertex in
complex momentum k = kx + ihx, of a generic form u(k ≈ k∗) ≃ u0[i(k − k∗)]α, with
α>−1.

See e.g. Kohn, PhysRev, (1959).
He, Vanderbilt, PRL, (2001).
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Flatness of topologically-trivial bands

We need to employ asymptotic analysis here (find W(x) for large x).
See e.g. Kohn, PhysRev, (1959).
He, Vanderbilt, PRL, (2001).

Let’s say u(k ≈ k∗) ≃ u0[i(k − k∗)]α, with α>−1. Denote k∗ = k0 + ih as the position
of the singularity in the complex plane.
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Flatness of topologically-trivial bands

Asymptotics of Wannier function reduces to integral representation of the Gamma
function along a Hankel contour encompassing k0 + ih.

W(x) ≃ 2u0 sin(πα)Γ(1 + α)
exp(−hx)

x1+α
, (5)

In case of several singularities we take h = min[ Im k∗], corresponding to the one
closest to the real axis.
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Flatness of topologically-trivial bands
Flatness of topologically trivial bands f =

∑
R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2

For this, we need to use analytical estimates of the sums of form
Σn(Λ)=

∑∞
x=Λ x−ne−x. We rewrite this sum as

Σn(Λ) = e−Λ ζ(
i

2π ,n,Λ) (6)

where ζ(ϕ,n,Λ) =
∑∞

x=0(x + Λ)−ne2πiϕx is Lerch zeta function.
See e.g Apostol (1951), Johnson (1974) in Pacific Journal of Mathematics

Up to O(1) prefactor Lerch zeta function ζ( i
2π ,n,Λ) behaves as 1/Λn for Λ≫1, thus

we obtain analytical estimate Σn(Λ)∼Λ−ne−Λ and Σn(1)∼O(1/e).
The flatness parameter involves summation of form Σn(Λ + 1)/Σn(1)∼(Λ + 1)−ne−Λ,
thus

f ∼ 1
Λ2(α+1) e−2hΛa, (7)

We confirm numerically that this approximation holds.
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Flatness of topologically-trivial bands

We can further simply this criterion

f ∼ 1
Λ2(α+1) e−2hΛa, (8)

We are not interested here in the power-law prefactor, and factor of 2 in the exponent.
It is safe to rewrite the flatness criterion as

f0 = e−hΛa, for trivial bands. (9)

The flatness parameter f0 of (9) sets a fundamental scale for achievable band flatness,
and covers three distinguished classes of perfectly flat nontopological bands with
f0 = 0.
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Part I: Flat topologically-trivial bands and where to
find them

f0 = e−hΛa, for trivial bands.

a→∞, atomic insulator.

Λ→∞, generic nonlocal, Tflat
ij = E0

N
∑

k
H(k)
εn(k) eik(Ri−Rj), Hflat =

∑∞
ij Tflat

ij c†i αc†j β

h→∞, singularity removed to infinity (nonsingular perfectly flat band).
Examples are listed in Ref. Rhim et al, PRB, 2019 .

Cases of topologically trivial, gapped perfectly flat bands are covered by the three
classes above, and constitute the topologically-trivial sector of the flat band
classification.
We do not have evidence of perfectly flat, gapped topologially-trivial bands which do
not fit into this classification.
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Periodic table of perfectly flat bands
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Flatness of Chern bands
We now apply the same argument f =

∑
R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2 to the flatness of the Chern bands

A theorem, tracing back to Thouless’1984, prevents Wannierizing Chern bands in 2D.
Thouless, J. Phys. C, (1984) .

However, it does not prevent Wannierizing a Chern band along one of the 1D
directions of a 2D Chern insulator

Qi, PRL, 2011 .

For our purposes, localization along 1D is a good indicator of band flatness through
f =

∑
R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2 .

We thus proceed with Wannierizing a Chern band along 1D, and finding its
asymptotic behavior.
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Chern numbers for a meromorphic flat band
We start from the construction of higher-C Chern bands on the basis of double
periodic meromorphic functions.
The essential toolbox is built upon implementation of theta functions, Weierstrass and
Jacobi functions, and their combinations
First, we define the Chern numbers for a meromorphic flat band
We can use connection between the wave function singularities (poles) and the band
Chern number C=

∫
BZ

d2k
2π Fxy, with Fxy=∂xAy−∂yAx, Ak=−i⟨uk|∂kuk⟩), in the

complex plane z=(kx,ky)

C =

∮
γBZ

+
∑
z∗i

∮
γz∗i

 Az̄dz + Azdz̄
4π =

∑
z∗i

pi(z∗i ). (10)

The Chern number is expressed through the sum of all poles z∗i in Brilloin zone (BZ),
counting their multiplicity pi(z∗i )

See e.g. Baum, Essays on Topology and Related Topics (1970) .
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Chern numbers for a meromorphic flat band

C =

∮
γBZ

+
∑
z∗i

∮
γz∗i

 Az̄dz + Azdz̄
4π =

∑
z∗i

pi(z∗i ). (11)

Example for C=4: 4 simple poles, each multiplicity 1.
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Asymptotics for meromorphic flat bands
For asymptotics, it is sufficient to replace the elliptic functions with their principal
behavior around poles

u(k) ≃
∑

n

u0
[i(k − k∗n)]pn

+ Regular part. (12)

(here k = kx + iky is in the first BZ).
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Asymptotics for meromorphic flat bands

The main contribution to the Wannier integral is given by the pole (12) of multiplicity
pn ≤ C/2 closest to the the real axis.
The residue at the pole is Res u(k) = −iu0xpn−1eixk∗/(pn − 1)!, with k∗ = k0 + ih.
Using the residue theorem, one obtains the Wannier asymptote

W(x) ≃ 2πu0
(pn − 1)!x

pn−1e−hx. (13)
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Flatness for Chern bands

To derive the flatness parameter, we need to evaluate sums of form
Σm(Λ) =

∑∞
x>Λ xme−x with m=2(pn − 1).

We can rewrite this sum through Lerch zeta function as

Σm(Λ) = e−Λζ(
i

2π ,−m,Λ) (14)

Up to O(1) prefactor Lerch zeta function ζ( i
2π ,−m,Λ) behaves as Λm for Λ≫1, thus

Σm(Λ)∼Λme−Λ and Σm(1)∼O(1/e).
Restoring dimensional units, we obtain the flatness criterion as f ∼ Λme−2haΛ, where
m = 2(pn − 1), i.e. depends on the nature of the wave function singularities.
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Flatness for Chern Bands

The finite Chern number inevitably leads to constraints on the band flatness
The high C=N can be attained in multiple ways. The simplest way is by having two
poles of multiplicity N each. This results into a higher Chern number C2N=2N≫1
restraining band flatness as f∼ΛC2N−2e−2haΛ.
To have a topological band, the wave function singularity must reside inside the BZ.
This leads to the limitation h≤π/a (square lattice), or ha∼1 independently of a and
lattice symmetries.
The flatness parameter is

f ∼ ΛC2N−2e−Λ. (15)
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Band Flatness Constraints of Higher Chern Numbers

C=2

C=8

C=4

Perfectly flat Chern bands only for Λ = ∞
High Chern number strongly obstructs band flatness
This could explain why most of natural flat Chern bands limited to C=1.
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Chen theorem (2014)

In a double-periodic system, it is impossible to have perfectly flat Chern bands on the
local tight binding.
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Remarks on Chern band flatness

f ∼ ΛC2N−2e−Λ. (16)

Consistent with the Chen theorem (2014).

Not reducible to the local fine tuning (perfect band flatness)

Not reducible to the atomic insulator. Chern insulator and atomic insulator belong to
different topological classes.
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Periodic table of perfectly flat bands
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Landau Levels and Twisted Bilayer Graphene

First, we can relax condition of double-periodicity, but still require the flat band state
to be a function of z=kx+iky.
In this case the contribution along the BZ boundary, which vanishes due to
double-periodicity, may itself contribute to the Chern number.

∮
γ

Adk = 2πC (17)

This case corresponds to the continuum model of twisted bilayer graphene (TBG),
which hosts perfectly flat Chern bands at the magic angle.

Tarnopolsky, Kruchkov, Vishwanath, PRL, (2019).

Duality between the perfectly flat Chern bands in TBG and the lowest Landau level
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Landau Levels and Twisted Bilayer Graphene
In both cases we are dealing with effective magnetic fields which produce Berry
curvature Fxy ∝ l2B, flux 2π through effective Brillouin zone (MBZ) and a perfectly flat
band in a certain limit.
For a generalized Landau level, without loss of generality we can consider asymptote
W(x) ∝ xne−x2/2l2B .
for Landau Levels the flatness criterion asymptotically reads

fLL ∼ Λ2n−1e−Λ2a2/l2B , (18)

Landau levels are perfectly flat only in the nonlocal limit Λ≫lB/a→∞.
Bringing this system on the tight-binding lattice (finite a, finite Λ) inevitably
broadens the Landau levels for any finite Λ

Hosftadter, PRB, (1976).
Kapit, Mueller, PRL, (2010).
Dong, Mueller, PRB, (2020).
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Topological Constraints on Hopping Range

Consistent with fundamental bound on hopping range
√

Ca of Jian-Gu-Qi (2013)
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Quantum Geometry and Band flatness
The band topology and geometry is described by the ”quantum geometric” tensor

Gij = ⟨∂iuk| (1 − |uk⟩⟨uk|) |∂juk⟩, (19)

Roy, PRB, 2014 .
Jackson et al, Nat Comm, 2015

.
The imaginary part of G is responsible for topology, and gives (off-diagonal) Berry
curvature Fij = ImGij; the real part Gij = ReGij is Fubini-Study metrics and is
responsible for the band geometry and its flatness.
The ideal flat Chern bands satisfy the Berry-geometric condition

Fxy = TrGij (20)

Haldane, PRL, 2011 .
Roy, PRB, 2014 .
Claasen et al., PRL, 2015 .
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Quantum Geometry and Band flatness
The ideal flat Chern bands

Fxy = TrGij (21)

Holomorphic and meromorphic flat bands automatically satisfy this criterion.
We can further rewrite

Fxy = TrGij = ⟨uk| |r̂|2 |uk⟩, (22)

Integrating (23) over Brillouin zone, one obtains r2
0∝C, hence the localization length is

r0∼
√

Ca.
For the Chern bands it is impossible to minimize localization length r0 independently
from the hopping range bound rhop ∼

√
Ca; thus the flatness parameter

f =
∑

R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2 cannot be made arbitrary small for any finite Λ, there are always

finite tails.
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Quantum Geometry and Band flatness

Fxy = TrGij = ⟨uk| |r̂|2 |uk⟩, (23)

Integrating (23) over Brillouin zone, one obtains r2
0∝C, hence the localization length is

r0∼
√

Ca.
For the Chern bands it is impossible to minimize localization length r0 independently
from the hopping range bound rhop ∼

√
Ca; thus the flatness parameter

f =
∑

R>Λ |Ψ(R)|2∑
R>0 |Ψ(R)|2 cannot be made arbitrary small for any finite Λ, there are always

finite tails.
Intuitive explanation of Chen theorem (2014).
Clearly now, the higher Berry fluxes in (23), hence the higher Chern numbers |C|>1,
present stronger constraints on electronic band flatness.
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Overview: Questions

Is there a commmon cause of the band flatness?

Why bringing Landau levels on the lattice (local tight-binding) inevitably broadens
the bands?
Why most of natural flat Chern restricted to C=1?

Why is it impossible to contruct a perfectly flat topological band on the local tight
binding? (Chen theorem’2014)

What is the condition for ideal flat Chern bands expressed through wave functions?

Can we classify all the known (gapped) perfectly flat bands?
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Periodic table of perfectly flat bands
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Summary

New criterion for band flatness through wave functions

Periodic table for perfectly flat bands as building blocks

Higher-Chern obstructions to band flatness (and ways to bypass them).

Connection to quantum geometry of flat bands and Fubini-Study metrics.
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